Sociale robots en de revalidatiezorg: Wat is de toegevoegde waarde?

De afgelopen 15 maanden hebben Roessingh Research and Development, BLEUCOMPANION en Roessingh, centrum voor Revalidatie samengewerkt in het SCOTTY project om te onderzoeken wat de toegevoegde van sociale robots in de revalidatiezorg kan zijn.

De rollen en functionaliteiten van de PEPPER robot voor de revalidatie zorg

Het SCOTTY project, gesubsidieerd door DIH-HERO, startte in maart 2021 met de definiëren van de functionaliteiten van de PEPPER robot voor de revalidatiezorg. De PEPPER robot is de sociale robot van Softbank Robotics. Robot PEPPER is ontworpen om te communiceren met mensen en heeft oog voor de emotie van mensen. Tijdens twee co-creatie sessie zijn we samen met zorgprofessionals gekomen tot vier rollen voor de PEPPER robot. PEPPER als assistent van de verpleegkundige, als ondersteuner van de fysiotherapeut, als gastheer en als metgezel.

Sociale robots en de revalidatiezorg

Acceptatie van de Pepper Robot in de revalidatie zorg

Nadat alle content voor deze rollen beschikbaar was is BLEUCOMPANION (technische partner in het project)  in de zomer van 2021 gestart met programmeren van de PEPPER robot. Eind 2021 was het eindelijk zo ver en kon er bij RRD gestart worden met eerste gebuikerstesten met technische experts, zorgprofessionals en patiënten. Deze eerste testen waren vooral nodig om alle bruikbaarheidsproblemen op te sporen en gaven ook veel inzicht in de interactie tussen mens en robot. De verwachtingen rondom de sociale robot waren erg hoog, maar ook kritisch. Om meer inzicht te krijgen in de acceptatie van een sociale robot in de revalidatie zorg is in het voorjaar van 2022 gestart met een acceptatiestudie bij Roessingh, centrum voor revalidatie onder 10 zorgprofessionals en 6 patiënten. Uit deze acceptatie testen kwam naar voren dat de functionaliteiten van de PEPPER robot niet voldoende zijn om nu een rol te kunnen spelen op een klinische afdeling. De zorgprofessionals en patiënten zagen zeker ook positieve punten, zoals het vriendelijk uiterlijk van de robot.

Een alternatieve rol: De Pepper robot in de wachtkamer

Om inzicht te krijgen in de mogelijkheid van de PEPPER robot in de wachtkamer is in de laatste maand van het project een flashmob studie uitgevoerd. In deze studie hebben wij 23 wachtende cliënten gevraagd om een gesprek te voeren met de robot en samen een vragenlijst in te vullen. Een rol in een statische setting, zoals als een wachtkamer lijkt beter te passen bij de PEPPER robot.

Wat is de maatschappelijke waarde van de PEPPER robot?  

Doormiddel van de Social Return on Investment (SROI) Methode is er een maatschappelijke business case voor de PEPPER robot opgesteld. Uit deze analyses blijkt dat dat maatschappelijk waarde van de PEPPER robot nu nog erg laag is en dat maatschappelijke business case alleen positief kan worden wanneer:

  • De rollen en functionaliteiten van de robot uitgebreid worden
  • Er meer patiënten gebruik kunnen maken van de robot
  • De aanschaf- en gebruikskosten van de robot lager zijn

Om de uitkomsten van het SCOTTY project te kunnen delen met anderen is een animatie gemaakt van de weg die de PEPPER robot binnen het project heeft afgelegd. Deze animatie van ruim 10 minuten geeft een goed overzicht van alle project activiteiten en resultaten: https://youtu.be/pTcftwoA_T8

In de juni editie van Robot Magazine is er aandacht voor het SCOTTY project. Voor een artikel zijn onderzoekers Marian Hurmuz en Stephanie Jansen-Kosterink interviewt.

Klik hier om het artikel te lezen.

Meer weten?

Hebben sociale robots en de toepassing hiervan in de zorg uw interesse gewerkt en wilt u meer weten over dit onderwerp? Neem dan gerust contact op met Sr. onderzoeker Stephanie Jansen – Kosterink (s.jansen@rrd.nl  -  0880 875 717).

E-Health evalueren: Hoe pak je dat aan?

In de praktijk en in de wetenschap is er nog steeds veel onduidelijkheid over het goed evalueren van eHealth. Vooral wanneer de technologie (onderliggend aan de eHealth toepassing) nog in ontwikkeling is. Roessingh Research and Development (RRD) heeft jarenlange ervaring in het begeleiden van dergelijke ontwikkel trajecten, waaronder het evalueren van innovatieve E-Health technologieën. Onder aanvoering van senior onderzoeker Stephanie Jansen – Kostering heeft RRD een eigen werkwijze voor eHealth evaluaties ontwikkeld en gepubliceerd in Digital Health.

 

Continue evaluatie van eHealth

De werkwijze van RRD kenmerkt zich door het continue evalueren van eHealth met als startpunt de volwassenheid van de technologie met aandacht voor verschillende perspectieven. Deze perspectieven zijn; het gebruikersperspectief, het klinische perspectief en het maatschappelijke perspectief. De volwassenheid van de technologie wordt bepaald aan de hand van de Technology Readiness Levels (TRLs). De 9 TRL niveaus (TRL 1 = laag en TRL 9 = hoog) zijn te onderscheiden in drie fases; TRL 1 t/m 3 is de onderzoeksfase, TRL 4 t/m 6 is de ontwikkelingsfase en TRL 7 t/m 9 is de implementatie fase. In de onderzoeksfase staat bijvoorbeeld het gebruikersperspectief centraal en zijn formatieve gebruikerstesten in een laboratorium belangrijk om een goede afstemming te hebben tussen de gebruiker en de technologie. In het paper worden verschillende voorbeelden gegeven van studies in de verschillen TRL-fasen.

E-Health evalueren

Werkwijze e-Health Evaluatie

De RRD werkwijze voor e-Health evaluatie is gepubliceerd in Digital Health. Interesse? Lees hier de publicatie: “Time to act mature – Gearing eHealth evaluations towards technology readiness levels”

Bent u of gaat u bezig met een evaluatie studie van een e-Health toepassing?

RRD denkt graag met u mee. U kunt bij ons terecht voor advies en/of het uitvoeren van evaluatie studies.

Voor vragen over evaluaties studies kunt u contact opnemen met Sr. onderzoeker Stephanie Jansen – Kosterink (s.jansen@rrd.nl  -  0880 875 717).

FOTO ERIC BRINKHORST

The Gamification App - our work on the BIONIC project

By Valentina Bartali and Monique Tabak

Four years ago, RRD (with different partners from all around Europe) started working on the European project BIONIC. In May, this project came to an end and, now, we would like to look back at our work and what we have achieved in these years.

The description of the project is written in this way: Personalized Body Sensor Networks with Built-In Intelligence for Real-Time Risk Assessment and Coaching of Ageing workers.

I can imagine that, from an outsider, with this description, it can be complicated to understand what BIONIC actually is.

BIONIC was a project aiming to develop a technological innovation able to detect real-time risks in the workplace (think, for example, about the industrial sector or factories) and in everyday life. Additionally, this technology has monitoring and coaching functions in order to help preventing musculoskeletal disorders. The system consists of a suit with sensors in different parts of the body, a smartwatch to measure heart rate and steps, and two applications. One application was developed to give feedback on the user’s movements, whilst the other application, Gamification app, was developed by RRD to motivate and coach users to live a healthy lifestyle, also outside the work environment. 

bionic
the_gamification_app

On the picture on your left, you can see how the suit is and what is shown on the computer. On the picture on your right, you can see the smartwatch and the application we created.

 

In BIONIC, our work was focused on estimating fatigue from sensors by machine learning algorithms (which you can read more about in the papers [1] and [2] in the reference list below) and the development of coaching strategies for healthy lifestyle for the gamification application.

In this blog article, I would like to tell you a bit more about this gamification application we developed, which has the following components (to get a better idea, see video below):

  • Overview of measured daily activity: users can get insights on their daily activities (step counts). The application (through an algorithm) can estimate the moments in which the user shows sedentary behavior (staying too much sitting) and the periods in which (s)he is doing some activity.
  • Overview of subjective fatigue: every day, users will be asked, with a question in the app, how tired they feel that day. The answers to this question will be shown in a graph.
  • Personalized exercise program: physiotherapy exercises advised to users in form of trainings and depending on which part of the body a user has the most issues (for instance, back, neck, or legs).
  • Motivational support via virtual coach Bill and gamification elements: Proposing physiotherapy exercises according to the feedback received from the BIONIC system and the needs of the users. These exercises are given by a virtual coach, Bill, who guides, motivates, and supports users. The Gamification App has gamification features to prompt users to do the exercises proposed and to change their physical activity (when needed). These gamification features entail earning points through:
    • Challenges: a set of goals that the user can set up for him-/herself
    • Achievements: a set of tasks that the user can achieve whilst using the Gamification App

The Gamification App was also evaluated in clinical settings at Roessingh to investigate if this technology could be of added value. From this evaluation, we discovered that the application could really help patients to be more aware of their activity patterns and it could motivate them to change their activity behaviors and facilitate rehabilitation.

We are really proud of what we achieved in these years considering that we were able to develop a working application of which added value was seen. The project is now finished, but we will bring with us what we have learnt during these years and we hope to further develop and use the application for other purposes. 

Reference list


[1] Marotta L, Buurke JH, van Beijnum B-JF, Reenalda J. Towards Machine Learning-Based Detection of Running-Induced Fatigue in Real-World Scenarios: Evaluation of IMU Sensor Configurations to Reduce Intrusiveness. Sensors. 2021; 21(10):3451.

[2] Marotta L, Scheltinga BL, van Middelaar R, Bramer WM, van Beijnum B-JF, Reenalda J, Buurke JH. Accelerometer-Based Identification of Fatigue in the Lower Limbs during Cyclical Physical Exercise: A Systematic Review. Sensors. 2022; 22(8):3008

RE-SAMPLE: AI-aangedreven zorg voor patiënten met COPD en andere chronische ziekten

Geschreven door Eline Te Braake en Christiane Grünloh

RE-SAMPLE is een Europees project dat zich richt op mensen met COPD en andere chronische aandoeningen. Het doel van RE-SAMPLE is om een technologie te ontwikkelen die patiënten en hun zorgverleners ondersteunt. Deze technologie zal patiënten helpen hun COPD en andere chronische aandoeningen te beheren. Samen met 9 andere partners werkt RRD samen aan dit project om de RE-SAMPLE technologie vorm te geven en te ontwikkelen. Het project is gestart in maart 2021 en zal in totaal 4 jaar duren. RE-SAMPLE heeft financiering ontvangen van Horizon (Grant agreement No. 965315).

GEBRUIKERSGERICHT. Bij het ontwerpen van een eHealth interventie is het belangrijk om rekening te houden met de behoeften en wensen van degenen die er gebruik van gaan maken. Uiteindelijk willen we dat RE-SAMPLE een meerwaarde heeft in de praktijk voor zowel mensen met COPD als hun zorgprofessionals. We willen natuurlijk ook dat na het project, RE-SAMPLE daadwerkelijk succesvol geïmplementeerd wordt in de gezondheidszorg. Om dit te doen, moeten we leren van de houdingen, ervaringen, en behoeftes van mensen met COPD en hun zorgverleners. Omdat zij allemaal experts in het veld zijn, weten zij het beste wat er momenteel ontbreekt of wat er juist al heel goed gaat. Deze informatie kan ons helpen bij het ontwikkelen van een technologie die daadwerkelijk nuttig voor hen is.

Sinds de start van RE-SAMPLE hebben we al heel wat verschillende onderzoeken uitgevoerd. We hadden de kans om met veel mensen met COPD en zorgverleners te praten om zo meer te weten te komen over COPD, de ervaringen met leven en omgaan met COPD, en voorkeuren met betrekking tot COPD-management. Dit leverde veel nuttige informatie op. Deze input heeft ons erg geholpen bij het vormgeven van de RE-SAMPLE technologie. Om u een idee te geven van wat we tot nu toe hebben ontdekt, heeft RRD een samenvattende video gemaakt met enkele hoogtepunten.

U kunt deze video hieronder bekijken!

Hoewel er al veel informatie wordt verzameld, hebben we in de toekomst ook steeds input nodig van zowel zorgverleners als mensen met COPD! Wilt u na het horen van RE-SAMPLE ook met ons meedenken en ons feedback geven?

Neem dan gerust contact met ons op!

Dit kunt u doen door een e-mail te sturen naar Christiane Grünloh (c.grunloh@rrd.nl) of Eline te Braake (e.tebraake@rrd.nl)

RRD at Supporting Health by Tech 2022

By Lena Brandl

At RRD, we do not do research by locking ourselves in an ivory tower to brood over the next scientific breakthrough. Part of our work is getting out into the world to meet other researchers and interested people and to discuss the progress of eHealth, while communicating our latest findings. The Supporting Health by Technology symposium brings together healthcare professionals, people from academics and organizations that develop eHealth – a perfect stage to present and discuss RRD’s latest eHealth research with fellow colleagues across The Netherlands and beyond. For the 11th edition of the symposium, RRD colleagues Lena Brandl, Marian Hurmuz and Stephanie Jansen-Kosterink joined the event at Martini Plaza in Groningen, The Netherlands.

During the conference, current and important developments and challenges for eHealth were discussed:

  • The world has seen a rapid increase in the development of individual eHealth applications. Google’s Play Store and Apple’s App Store nowadays offer a wide range of eHealth apps with varying degree of functionalities and pricing for all sorts of health problems. But it is less clear how we can join forces and develop a global eHealth strategy to exploit technology’s potential to improve modern healthcare.
  • The inclusion of people from all regional, educational and ethnic backgrounds, including people who suffer from more than one disease (called multi-morbidity) is crucial for developing eHealth that actually helps people manage their health problems in everyday life. How can we include difficult-to-reach groups in eHealth research, and thereby prevent that the technology we develop makes today’s digital divide worse?
  • What is the state of machine learning in eHealth, what tasks can it do and how can it be optimized for supporting healthcare professionals in their work?

These are some of the questions addressed at Supporting Health by Technology. RRD contributed to the discussion by presenting some of our recent eHealth research:

  • Marian Hurmuz presented the results of a social robot acceptance study conducted with patients and nurses in the Roessingh rehabilitation centre, summarising their acceptance and intention to use the social robot for daily care activities (SCOTTY project).
  • Stephanie Jansen – Kosterink demonstrated the value of the SROI (Social Return on Investment) method to access the societal impact of innovations in healthcare and how the method can help decide whether the societal impacts of employing a social robot in rehabilitation care outweigh the robot’s monetary investments (SCOTTY project).
  • Lena Brandl presented an automatic decision-making algorithm using a method called Fuzzy Cognitive Maps (FCMs) in a self-help eHealth service for older mourners. The aim of the decision making algorithm is to guide the older mourner to offline support in case they find themselves in need of support beyond the online service (LEAVES project).

With new ideas and questions buzzing in our head, we return to RRD to continue our work on eHealth!

MicrosoftTeams-image (2)
MicrosoftTeams-image (3)
MicrosoftTeams-image (4)

Flash mobs as a research method?

By Kira Oberschmidt

When you hear the words ‘flash mob’ you probably think of people suddenly starting to dance inside a mall. Or maybe an orchestra giving an impromptu concert in a market square? A few years ago such seemingly spontaneous social activities were very popular. And now the ‘flash mob’ has found its way into research.

In academia, a ‘flash mob’ of course doesn’t include dancing or music. Instead it means trying to involve many different participants in a short period of time. And not only the conduction of the research is fast-paced, the analysis and reporting should also be done quickly.

The relatively new method came on our path when we were planning a final study for the SALSA project, and we decided to give it a shot. Within the SALSA Health project, we evaluate a technology that stimulates exercise in rehabilitation through the use of games. The system can be adjusted to the range of motion of a patient, and individual exercise schemes can be added and saved. After a previous six month testing period at a physiotherapist’s, we were now interested in the potential of SALSA Health for the rehabilitation context.

So at the beginning of April, we set up a big tv screen and a Kinect sensor in the entry hall at Roessingh, Centre for Rehabilitation, Enschede. Patients and therapist could spontaneously stop by and try out the SALSA Health system. Then, they were asked to complete a short survey on their experience, and whether they would like to make use of SALSA Health in their treatment.

Both patients and healthcare professionals liked SALSA Health and saw its potential to enhance rehabilitation care. But what was equally important for us was the successful conduction of our first flash mob study. As expected, there were some teething problems, but also a lot of things that went well. Based on our experience, we came up with some tips for anybody who wants to conduct similar flash mob studies:

  • Give people time. In Dutch we call it ‘kat uit de boom kijken’ (see which way the cat jumps). People might walk by and look four times, and hopefully the fifth time they will stop and ask what you are doing. So allow enough time for this in your study.
  • Create awareness. Of course, a researcher should be present at all times to explain what you are doing there. But you should also make use of materials like banners or flyers for those who want to learn about your research, but don’t want to commit to anything yet.
  • Involve insiders. The best way to get people to join is by having a peer (in our case another patient or a colleague) tell them about it. So stimulate participants to tell others! Maybe a therapist can email his colleagues, or a patient can bring her roommate along later.
  • Keep it short. Participation in the flash mob is meant to be short and spontaneous, so limit what you ask of people. This also allows you to involve those who have little time or walk by in between meetings.
  • Adjust the location to your target group. Find a place where your target group is sure to find you, but where they also feel comfortable to participate. Being seen by everybody is nice to draw attention to your research, but may also scare people off.

We will also be implementing these tips ourselves in the future, since this definitely wasn’t our last flash mob. Actually we are planning a new one right now, so keep an eye out! And if you are interested or have any questions, get in touch!

 

If interested, you can learn more about the flash mob method here:

Moons, P. (2021). Flash mob studies: a novel method to accelerate the research process.

Or read about an example of a flash mob study here:

van Nassau, S. C., Bond, M. J., Scheerman, I., Van Breeschoten, J., Kessels, R., Valkenburg-van Iersel, L. B., ... & Roodhart, J. M. (2021). Trends in Use and Perceptions About Triplet Chemotherapy Plus Bevacizumab for Metastatic Colorectal Cancer. JAMA network open, 4(9), e2124766-e2124766.

INFINITECH: Project en onderzoek

Door Marian Hurmuz en Kira Oberschmidt

RRD maakt deel uit van het Europese project INFINITECH. Dit project wordt gefinancierd door de European Union’s Horizon 2020 research and innovation programme (nr. 856632). Binnen INFINITECH werken vele partners samen om de drempels voor BigData, Internet of Things, en kunstmatige intelligentie gedreven innovatie te verlagen, de naleving van de regelgeving te bevorderen en extra investeringen aan te moedigen.

De rol van RRD binnen dit project is het onderzoeken van de bereidheid van gebruikers om gegevens te delen met zorgverzekeraars en het verzamelen van informatie over het gebruik van een eHealth toepassing.

Gegevens delen met zorgverzekeraars?

Om het eerste doel te behalen heeft RRD een vragenlijstonderzoek uitgevoerd. In dit onderzoek heeft RRD onderzocht in hoeverre volwassenen open staan voor het delen van medische gegevens of leefstijlgegevens met hun zorgverzekeraar. Vanuit Nederland, Duitsland en 34 andere landen, hebben in totaal 180 mensen (57,8% vrouw) deelgenomen aan dit onderzoek. De resultaten waren:

  • De meerderheid van de deelnemers geeft aan geen gegevens te willen delen met hun zorgverzekeraar, ongeacht van wat voor voordeel er tegenover staat.
  • Kijkend naar de mensen die wel open staan voor delen, dan is de groep groter wat betreft het delen van leefstijlgegevens (bijvoorbeeld het aantal gezette stappen per dag) dan het delen van medische gegevens (bijvoorbeeld zelf gemeten bloeddruk waardes).
  • De deelnemers waren het meest geneigd om gegevens te delen wanneer ze daarvoor een persoonlijke gezondheidsrisico analyse ontvangen.
  • De deelnemers waren het minst geneigd om gegevens te delen wanneer ze daarvoor een gratis product krijgen.

Wil jij eHealth testen?

Momenteel wordt er bij RRD een ander onderzoek uitgevoerd om data te verzamelen omtrent het gebruiken van een eHealth app. Binnen dit onderzoek krijgen deelnemers toegang tot de Healthentia app (zie Figuur 1 hieronder). Deze app geeft gebruikers de mogelijkheid om hun gezondheid te monitoren. Dit wordt gedaan door het bijhouden van hun fysieke activiteit en het invullen van vragenlijsten.

Deelnemers kunnen de Healthentia app voor langere tijd gebruiken (tot een jaar lang). Het doel van dit onderzoek voor RRD is om te achterhalen hoe de app wordt gebruikt over een lange periode, waarom de app wordt gebruikt en door wie de app voor langere tijd wordt gebruikt. Momenteel hebben 61 volwassenen zich voor dit onderzoek aangemeld.

RRD is voor dit onderzoek blijvend op zoek naar nieuwe deelnemers van 18 jaar of ouder. Zou u ons willen helpen binnen dit onderzoek? Kijk dan voor meer informatie op: https://www.rrd.nl/infinitech/

Picture1

7 lessons for designing virtual agents for eHealth

By Lex van Velsen

In the past years, I (or rather, RRD) have participated in numerous projects in which we developed virtual agents for eHealth. Virtual agents that supported healthy eating, cognitive health, or supporting older adults in the mourning process after losing their spouse. In all of these projects, we have learned valuable lessons in the design, implementation and evaluation phase. In this article, I would like to share 7 lessons with you for designing virtual agents for eHealth.

 

  1. The more advanced its functionalities, the more human-like the appearance of the virtual agent should be. This is in line with the expectations of end-users, where the level of simplicity of the agent appearance should match what it does.
  2. Include humour in the dialogues, but not too much. A discussion with a virtual agent should be engaging. Humour can certainly help here, but too much humour will have a detrimental effect on the interaction. So joke with caution, and test the end result with potential end-users.
  3. Make sure that the most important UX aspects for virtual agents for health -‘usefulness’ and ‘enjoyability’- are taken care of. Virtual agents for health should do two things, be useful and engaging. This way, their effectiveness and efficiency are optimized, while end-users keep on using the service. Be sure to have a keen eye on usefulness and enjoyability during the design and testing process.
  4. Be cautious with making the virtual agent look like a peer, it induces bias. It is tempting to make the virtual agent look like a peer of the end-user. You can imagine it will instil feelings of trust and relatedness. However, for the case of older adults, we found out that this introduces ageism. Societal prejudices towards older adults were embodied in the virtual agent and not appreciated by test users.
  5. First impressions last. The first impressions that end-users have of a virtual agent will last months, and will thus affect both the short and long term interaction.
  6. First impressions of a virtual agent are shaped by two factors. The presence of positivity and attentiveness are the factors that, in first instance, predominantly make up whether or not an end-user takes a liking towards a virtual agent for the health context.
  7. More realistic virtual agents lead to more compliance. End-user are more willing to comply with advice given by a realistic agent than with advice given by, let’s say, a cartoonish agent.
MicrosoftTeams-image (3)

 

Credit due where credit is due. Most of these lessons were the result of the hard work of some of our junior researchers. I would especially like to mention Silke ter Stal and Leonie Kramer here.

Did we inspire you to embed a virtual agent in your own eHealth service? Or do you want to improve your current virtual agent? Drop us a note, we would love to talk shop.

SmartWork: Smart Age-friendly Living and Working Environment

SmartWork is a project funded under the Horizon 2020 research and innovation action programme (grant agreement No 826343), which started in January 2019 and ends in March 2022. The main aim of the SmartWork project was to build a system that supports older adults staying actively working as long as desired (also called work ability sustainability).

As one of nine research partners, RRD has developed several services and algorithms which were showcased in a demo at the 2nd Workshop on Smart, Personalized and Age-Friendly Working Environments. This workshop was held in conjunction with the 13th International Joint Conference on Computational Intelligence (IJCCI 2021) in October 2021.

This demo video, that can be found below, shows the services that RRD developed as part of the H2020 SmartWork project:

  1. the modules of the healthyMe smartphone application;
  2. the iCare portal;
  3. the Interventions Manager Service (IMS).

 

healthyMe smartphone application

The healthyMe smartphone application is the main mobile entry point for the users to collect and visualise physiological, activity and lifestyle data. It is available on Android and iOS in three languages (English, Danish, Portuguese). Each module (steps, sleep, heart rate, food diary, weight, exercises) has its own widget, presenting the collected data in daily, weekly and monthly overviews. These collected data are automatically measured through:

  • an activity tracker to measure physical activity, sleep and heart rate (Fitbit Charge 3); and
  • a smart scale to measure body weight (Withings Body).

The food diary in the application allows users to manually track their food intake, which raises their awareness of the total amount of energy consumed. The office-friendly exercise widget presents a library of video-guided exercises that have been recorded in collaboration with healthcare professionals. The exercise videos allow users to safely perform physical exercises at home or at work at the time of their best convenience. The integrated filter allows the user to select exercises by body parts (shoulders, neck, back, arms, legs).

The virtual coach “Amelia” guides users through the application, starting with an intake dialogue through which users can set their activity goals. Depending on their actual level of physical activity that is tracked later on, the goal is automatically adjusted. If a person is less active, the step goal will be adjusted and increased if a person reached their step goals. To prevent demotivation, the automatically adjusted goal is always slightly higher than was reached in the previous week and hence likely to be achievable for the person.

 

iCare portal

The iCare portal is a service that allows formal and informal caregivers to support the older office worker reaching their health goals. Strong focus is placed on privacy and control in that the office worker can configure within the healthyMe service which data they want to share, from which period of time and with whom. After configuration, summaries of health-related information collected within the healthyMe service are visualised in a web-based portal. This way, the caregiver can monitor the health status of the office worker and provide support for the self-management of health conditions.

 

Interventions Manager Services (IMS)

The Interventions Manager Services (IMS) is a centralised component within the SmartWork platform that acts as a smart message hub for triggered interventions. From the back-end service side, the IMS can be called if any of the smart services developed within SmartWork decides that some intervention should be triggered. From the client side, the IMS lets the SmartWork client applications register themselves to be notified of triggered interventions. Through the IMS, all smart services have a single entry-point for delivering intervention triggers, and all client applications have a single entry point for registering to receive triggers. Another motivation for the single entry-point was to avoid overloading the user with multiple notifications of triggered interventions at the same time. Currently, only one intervention is delivered at a given time, and in the future more sophisticated intervention prioritisation mechanisms can be implemented.

After a bit over 3 years, the SmartWork projects is coming to an end this month. It was a great collaboration with research partners from Greece, Switzerland, Portugal, Sweden, Denmark, United Kingdom, Ireland and The Netherlands. We enjoyed working together with the partners and hope we can collaborate in future projects.

eHealth is not a microwave: so why use the same usability evaluation instrument? 

By Marijke Platenkamp-Broekhuis 

When I started my PhD on usability benchmarking of eHealth applications, I noticed a certain level of scepticism. There was this notion that usability was ‘figured out’, that there was nothing new to discover. In this blog post I will argue why the concept of usability is still worthy for further exploration, especially in the field of eHealth.  

The general definition of usability has not changed since the ‘90s. It is described as: ‘The extent to which a system, product or service can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use’. On the one hand, this definition is clear: the user needs to be able to use the system effectively, efficiently and satisfactory. However, on the other hand the definition is fuzzy as it does not specify the type of system, users, the goals and context-of-use. You, as a researcher of usability expert, need to fill this in and decide what effective or satisfactory use means for your product. That needs to be taken into account during the evaluation of the application’s usability. The funny thing is, that when we evaluate usability of systems and applications, the same instruments are used for all different kinds of (digital) applications. Research showed that usability questionnaires are the most popular means to evaluate an application’s usability. These questionnaires, of which the System Usability Scale (SUS) is most frequently used, are all general in the sense that they do not consider specific product, user, goal or contextual characteristics that may affect the user’s perception of the usability. In my opinion however, we need to reverse this process: by starting to define usability from these characteristics and then select or build a suitable instrument to evaluate the usability of this application. In other words, to define and evaluate usability based on the system domain. In my research this has been the field of eHealth.  

For eHealth applications, it is especially important to consider these product, user, goal or contextual characteristics for a couple of reasons: 

Product: The SUS has been used for a wide variety of products, like microwaves, eLearning platforms, eHealth applications and computer programs. However, a microwave is not even remotely similar to an eHealth application. So it does not make slightest sense to use the same questionnaire to evaluate the usability of both systems. Now I guess you are with me on the whole ‘eHealth is not a microwave’ -argument, but I could imagine you think that for other digital applications, may it be eHealth, eLearning or eCommerce, usability involves similar aspects. This is true to a certain degree. However, eHealth applications includes often medical terminology, are connected to other health applications or built in a certain way to accommodate for visual, cognitive or physical health impairments of the intended target audience. Furthermore, user problems could lead to hazardous situations. For example, I once found the following usability issue in a dataset of an online application for people with diabetes type 2: The user does not understand the word ‘hypoglycemia’; it is not clear if this indicates a high or low blood sugar level.  This is an example of a potentially life-threatening situation when the user does not understand signals from the eHealth application. It is therefore not sufficient to ask if the application is easy to use; you want to know if the user understands the medical terms, feedback and signals of the application. These are factors that are not relevant for webshops or eLearning platforms.  

User: For eHealth applications, the end-users are often (1) people with a certain health condition, (2) (a subset of) the general population or (3) health professionals. It could also be that an eHealth application is used by both patients and health professionals. This is often the case if an application is used within treatment programs. For example, the patient uses the eHealth application to receive information or do exercises at home while the health professional monitors the progress and sends his or her patient the exercises via the application. If the user is a patient, the eHealth application needs to make sure that the terminology and wording fit with the knowledge the user has about his or her health condition. Also, it could be that the user has a visual or physical health impairment that could hinder user-system interaction (like when having small buttons on a phone for people with hand muscle or joint problems). Likewise, if the eHealth application is primarily used by health professionals and it does not fit within their work flow or support their tasks, the application will not be used.  

Goal: eHealth applications are designed with a specific health goal in mind: to prevent, inform about, diagnose, treat or monitor a health condition. Users need to be aware of the health goals the application can provide. If the users like using an eHealth application but they do not see how it can support their or their patient’s health condition, again, you end up with a smooth working application that few will actually use.

Contextual: The eHealth application is often embedded within a medical institute or treatment program. While you can use an app on your smartphone anywhere and anytime you want, eHealth applications can be confined to specific training rooms within a medical centre (like a VR system in the training room of physiotherapy practice) or dates and times (where the user needs to fill in a health questionnaire at certain time intervals). It is important to make sure that the system is not only user-friendly, but that it is also suitable for the given context in which it is used. If the VR system takes up too much time setting up during a training session, the health professional will probably skip this system and move to other fitness equipment that is easier to start. 

How suitable is a general usability evaluation instrument to evaluate the usability of eHealth applications?

 
Taking this all in mind, I wanted to put it to the test: how suitable is a general usability evaluation instrument to evaluate the usability of eHealth applications? To find the answer, I conducted usability evaluation studies with three different eHealth applications. I compared the System Usability Scale with task performance data  and the number of minor (e.g. the user does not like the music), serious (e.g users with colour blindness have difficulty distinguishing elements in the interface) and critical (e.g. the user does not know how to schedule an exercise for the patient) usability issues. These usability issues were derived from a think aloud test. This list of usability issues based on a qualitative data collection method is considered to be the best indicator of a system’s usability (however, it is not the most efficient way to measure the usability of an application as it takes up much time and effort from both researcher and participant, hence the preference for questionnaires). If there are few serious or critical issues, the usability can be considered quite good.  I was curious to see if a low (or high) SUS score would result in more (or less) serious or critical usability issues. 

Our results indicated that actually task completion, the number of tasks users were able to complete, had a better correlation with the number of serious and critical usability issues and the SUS. This indicates that the SUS is not sufficient for usability evaluations for eHealth applications.  

Now that we know that usability has to be interpreted differently for eHealth applications and that a general instrument like the SUS is not good enough, the next step is to conceptualize usability for the eHealth domain. In my next blog, I will continue with exploring the concept ‘eHealth usability’. 
 
If you want to read more about the study I described in this blog, here below you find the information:

 
Broekhuis, M., van Velsen, L., & Hermens, H. (2019). Assessing usability of eHealth technology: A comparison of usability benchmarking instruments. International Journal of Medical Informatics, 128(January), 24–31. https://doi.org/10.1016/j.ijmedinf.2019.05.001  
  • TWITTER
  • LINKEDIN

 © Copyright - Roessingh Research and Development